IDENTIFICATION OF PROKARYOTIC COMMUNITIES IN ANOXIC ESTUARINE SEDIMENT BASED ON 16S rRNA GENE SEQUENCE DATA

William Berkeley Kauffman
Chemical Oceanography Laboratory
The Moss Landing Marine Laboratories
THE BLACK BOX

Residence Time (d) = \frac{\text{Reservoir (g)}}{\text{Flux (g/d)}}
Phylogenetic Tree of Life

Eukaryota

EUKARYOTES

- Entamoebae
- Slime molds
- Animals
 - Fungi
 - Plants
 - Ciliates
 - Flagellates
 - Trichomonads
 - Microsporidia
 - Diplomonads
Phylogenetic Tree of Life

Bacteria
- Spirochetes
- Cyanobacteria
- Planctomycetes
- Bacteroides
- Cytophaga
- Thermotoga
- Aquifex
- Green Filamentous bacteria
- Gram-positive

Archaea
- Methanosarcina
- Methanobacterium
- Thermoproteus
- Pyrodicticum
- T. celer

Eucaryya
- Entamoebae
- Slime molds
- Animals
- Fungi
- Plants
- Ciliates
- Flagellates
- Trichomonads
- Microsporidia
- Diplomonads

PROKARYOTES

EUKARYOTES
Oxidation of organic matter

WATER

- \(\text{O}_2 \text{ Fe}^{3+} \)
- \(\text{NO}_3^- \text{ SO}_4^{2-} \)

MUD

- \(\text{Eh} \)
- \(\text{sediment} \)
- \(\text{column} \)

Energy

- **Yield**
- **aerobic resp. 686**
- **dissimilatory nitrate red. 649**
- **iron red. 300**
- **sulfate red. 190**
- **methanogenesis 8.3**

Due to reduction of organic matter

Chemical Reactions

- \(\text{O}_2 \rightarrow \text{CO}_2 \)
- \(\text{NO}_3^- + \text{H}^+ \rightarrow \text{N}_2 \)
- \(\text{Fe}_2(\text{OH})_3 + 2\text{H}^+ \rightarrow \text{Fe}^{2+} \)
- \(\text{SO}_4^{2-} + 2\text{H}^+ \rightarrow \text{HS}^- \)
- \(\text{H}_2 + \text{CO}_2 \rightarrow \text{CH}_4 \)
GOALS

• Identify geochemical gradients in Hudson’s Landing sediments using multiple proxies
• Identify members of the prokaryotic consortia along these gradients using molecular methods
• Address the hypothesis that prokaryotes are distributed across these gradients in a regular and predictable manner
• Discuss implications for managed estuaries
SEDIMENT SURFACE

Hydrogen Sulfide Bubbles

Tubeworm

Hydrogen Sulfide Bubbles

Tubeworm Burrow
OXIDATION-REDUCTION POTENTIAL AND PH
Increasing Dissolved Recalcitrant Material With Depth

POC/N Negatively Correlated with C:N

POC:N Positively Correlated With C:N
CARBON: NITROGEN

Blue Bar- C:N characteristic of autochthonous carbon (algae)

Green Bar- C:N characteristic of allochthonous carbon (external carbon sources)

Redfield Ratio

Redfield Ratio = 6.6
Cellulosic Material

Minerals

Isthmia

Chaetoceros

2.6CM
DGGE RESULTS

A. Raw Image
B. All Bands
 Highlighted
C. Excised Bands
 Highlighted
SEDIMENT COLUMN

SULFATE REDUCERS

SULFIDE OXIDIZERS
SEDIMENT COLUMN

METHANOGENS

METHANOTROPHS
FERMENTERS REDUCE H⁺

METHANOGENS OXIDIZE H₂ (G)
THE SHIFT

- Proteobacteria dominate surface
- Degradation of macromolecules
- Denitrifying bacteria
- Metal Reducers
- Sulfate Reduction
- Sulfide Oxidation
- Methanogenesis/ Methanotrophy
The Shift

- Fermenters dominate the deep
- Increased degradation of recalcitrant organics
- Sulfate Reduction
- Sulfide Oxidation
- Methanogenesis/Methanotrophy
ESTUARINE MANAGEMENT

- Syntrophic relationships not typically considered
Syntrophic relationships not typically considered
At Hudson’s Landing, any change resulting in anoxic bottom conditions will effect nitrification rates
ESTUARINE MANAGEMENT

• Syntrophic relationships not typically considered
• At Hudson’s Landing, any change resulting in anoxic bottom conditions will effect nitrification rates
• Methanotrophic bacteria and archaea limit release of methane (greenhouse gas) to the atmosphere
ESTUARINE MANAGEMENT

- Syntrophic relationships not typically considered
- At Hudson’s Landing, any change resulting in anoxic bottom conditions will affect nitrification rates
- Methanotrophic bacteria and archaea limit release of methane (greenhouse gas) to the atmosphere
- Sulfide oxidizing prokaryotes limit flux of toxic hydrogen sulfide into water column
ESTUARINE MANAGEMENT

- Syntrophic relationships not typically considered
- At Hudson’s Landing, any change resulting in anoxic bottom conditions will effect nitrification rates
- Methanotrophnic bacteria and archaea limit release of methane (greenhouse gas) to the atmosphere
- Sulfide oxidizing prokaryotes limit flux of toxic hydrogen sulfide into water column
- Mercury methylation tied to iron/ sulfate reducing communities (Kerin et al. 2006)
ESTUARINE MANAGEMENT

• Syntrophic relationships not typically considered
• At Hudson’s Landing, any change resulting in anoxic bottom conditions will affect nitrification rates
• Methanotrophic bacteria and archaea limit release of methane (greenhouse gas) to the atmosphere
• Sulfide oxidizing prokaryotes limit flux of toxic hydrogen sulfide into water column
• Mercury methylation tied to iron/ sulfate reducing communities (Kerin et al. 2006)
• Management plans should consider microbial consortia in an effort to maximize beneficial processes while minimizing those that are detrimental
THE END

Thank You- Any Questions?

Funding Sources:
Harvey Research Fellowship- San Jose State University
Dr Earl H. Myers and Ethel M. Myers Oceanographic/Marine Biology Grant
ACKNOWLEDGEMENTS

• **Committee**- Kenneth Coale, Sabine Rech, Ivano Aiello, Jeff Hughey
• **Personal**- Deborah Coffin, Rebecca and Kyhber, Danny, Lorie, Temple,
• **Chem Oce/ Trace Metals**- Sara Tanner, Craig Hunter, Jason Smith, Liz Sassone, Jocelyn Douglas, Wes Heim, Allan Andrews, John Negrey, Adam Newman
• **I.T. Department**
• **Environmental Microbiology Lab @ SJSU**- Elaine Bryant, Paula Mattheus, Cleber Ouverney
• **Small Boats**- JD, Scott Hansen, Lee Bradford
• **Research Help**- Jon Walsh, Max OC, Cassandra Brooks, Liz Sassone, Brent Hughes, John Haskins, Paul Chua, Rhea Sanders, Brian Bender, Brian Deiter
• **Geo Oce, Benthic Lab, Invert Zoology**
• **Classes**- Geo Oce (Ivano), Chem Oce (Kenneth), Stats (Jim), Molecular methods (Jon), Methods (Jim and Mike)
• **Facilities, etc.**- Joan Parker and library staff, May Deluna, Ashley Vizurraga, John Machado, Donna Kline, Barry Giles, Gary Adams, Lynn McMasters, James, Billy, and Ralph (crawfish cooker!)